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Abstract

A phase cycling scheme for suppressing spectral artifacts introduced in quadrupolar echo spectroscopy of spin-1 nuclei due to finite
pulse width effects is presented. The phase cycling scheme is developed using the formalism of average Hamiltonian theory and fictitious
spin-1 operators. A simulation and experiment on deuterated polyethelene is performed highlighting the spectral artifact introduced by
finite pulse widths and successful removal with the proposed phase cycling scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

An experimentally challenging aspect of solid state
nuclear magnetic resonance is the requirement of delivering
a strong radio frequency (RF) pulse to modulate the nucle-
ar spins in the presence of a dipolar or quadrupolar inter-
action. Quite often, if the pulse power is substantial, one
can ignore the spin system’s evolution during the RF pulses
and approximate them as ideal d-function perturbations.
However, there are a multitude of NMR experiments
where this approximation is not valid, and accounting for
finite pulse width effects can drastically improve upon a
cycles’ performance. For example, the celebrated
WAHUHA cycle as well as many other multiple pulse
sequences were significantly improved upon when finite
pulse widths were properly accounted for [1].

In this work, we investigate the finite pulse width arti-
facts introduced in spin-1 quadrupolar echo spectroscopy.
To suppress the artifacts introduced from the ring down
of the RF coil, a spin echo is applied in this technique
for studying the broad quadrupolar spectra of a solid spin
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system. The method involves acquiring the peak of an
echo, which under ideal experimental conditions and no
relaxation, would yield a signal precisely equal to that of
the free induction decay of a single pulse [2]. This scheme
has been applied with great success for understanding var-
ious properties such as the orientation and rate of rotation
of molecules of a broad range of polymer [3,4], solid [5] and
semisolid [6] systems.

The signal acquired by a spin echo, however, is never
free of instrumental artifacts often making interpretation
of data challenging. A variety of techniques have been
introduced to alleviate distortions commonly encountered
in echo spectroscopy of spin-1 nuclei including phase
cycling schemes for suppressing pulse transients and imper-
fect p/2 pulses [7], co-adding spectra acquired with different
pulse spacings, or adding a two-dimensional Fourier trans-
form for removing feed-through signals [8] and using com-
posite pulses or chirped pulses for alleviating pulse power
issues [9–13]. An additional artifact often encountered
causes an asymmetry of the spectra due to the evolution
of the spin system under the quadrupolar Hamiltonian
during the RF pulses.

Previous work associated with spectral artifacts due to
finite pulse widths in a two pulse echo experiment have
been reported and described in detail by Bloom et al.
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[14] and Henrichs et al. [15]. Their work showed that one
can remove distortions due to finite pulse widths by scal-
ing the experimental data by a multiplicative factor
determined a priori. In this paper we describe how the
spectra of spin-1 nuclei are distorted due to finite pulse
widths in a two-pulse echo experiment, and how one
can suppress these artifacts to first-order by cycling the
phases of both the receiver and transmitter. The
approach makes use of the spin-1 operator formalism
developed by Vega and Pines [16] together with average
Hamiltonian theory developed by Waugh and co-workers
[17]. Our results are verified using a home-written simu-
lation program and tested experimentally on a sample of
deuterated polyethelene.

2. Theory

In the following, we analyze the spin dynamics of
spin-1 nuclei evolving under the first-order secular quad-
rupolar interaction subject to a large, static and homoge-
neous field and the two pulse RF sequence shown in
Fig. 1. We assume that the quadrupolar interaction is
significantly larger than any heteronuclear and homonu-
clear dipole interactions as well as any resonance offset
present and that the system of interest is non-metallic,
so that any paramagnetic shift anisotropy can be
ignored. The cycle shown in the figure is known to refo-
cus the time evolution of spin-1 nuclei evolving under the
first-order secular quadrupolar interaction which is given
by

HxQ ¼ x0QR2;0

1ffiffiffi
6
p ½12Iz;1Iz;1 � II � ð1Þ

In the above expression R2;0 ¼
ffiffi
3
2

q
½P 2ðcosðhÞÞ

þðg
2
Þ cosð2hÞ sin2ðuÞ�, P2 (cos (h)) is the second-order Legen-

dre polynomial of cos (h), h and u are two of the three
Euler angles and x0Q ¼

e2qQ
2Ið2I�1Þ�h [18]. The Hamiltonian has

been written using the spin-1 operator formalism of Vega
and Pines [16] where the spin operators are
x y

1 2 3 4 5

Fig. 1. Two pulse sequence for refocusing the quadrupolar Hamiltonian.
In the figure, the two p/2 pulses have a width of 2a and the phases of the
two pulses shown as x and y can be any combination of 90 degree phase
shifted pulses.
Ip;1 ¼ 1
2
Ip ð2Þ

Ip;2 ¼ 1
2
ðIqIr þ IrIqÞ ð3Þ

Ip;3 ¼ 1
2
ðI2

r � I2
qÞ ð4Þ

with p = x, y, z and (p,q, r) = (x,y,z) with cyclic permu-
tations [16]. An illuminating approach for studying the
dynamics of a spin system subject to an RF perturba-
tion, given by Waugh and co-workers [17], is to consider
the average or effective Hamiltonian of the RF pulse
train. This approach will be shown to provide insight
into how the finite pulse widths affect the system
evolution. In this formalism, the time evolution of the
system from time t = 0, q (0) to the state at time t = tc,
q (tc) is given by

qðtcÞ ¼ U RFU intqð0ÞU�1
int U

�1
RF ð5Þ

where the propagator URF is given by the Dyson series

URF ¼ . . . U 3U 2U 1U 0 ð6Þ
and Uint is given by the Magnus expansion

U intðt; 0Þ ¼ exp½�itcðH 0
int þ H 1

int þ � � �Þ� ð7Þ
with

H 0
int ¼

1

tc

Z tc

0

eH intðsÞdt ð8Þ

H 1
int ¼

�i

2tc

Z tc

0

½ eH intðsÞ;
Z s

0

eH intð/Þd/�ds ð9Þ

H 2
int ¼ . . . ð10Þ

In the above, URF represents the interaction associated
with the sequence of RF pulses applied over a time tc,
and Hint refers to the systems’ internal Hamiltonian. An
attractive feature of average Hamiltonian theory is that a
variety of Hamiltonians can be accounted for in the system
evolution including pulse errors and finite pulse width
effects.

For conciseness we rewrote the quadrupolar Hamiltoni-
an given in Eq. (1) more compactly as

HxQ ¼ xQ½12Iz;1I z;1 � II � ð11Þ

where xQ ¼ x0QR2;0
1ffiffi
6
p , and take the initial state of the sys-

tem to be given by q (0) = Iz,1.
To calculate the resulting zeroth-order term of the quad-

rupolar Hamiltonian in the Magnus expansion, we con-
structed Table 1 and computed the toggling frame
quadrupolar Hamiltonian, eH xQ , during each stage of the
pulse cycle. Referring to Fig. 1, for the first time interval
0 6 t < s � a, URF = 1. For the second interval
s � a 6 t 6 s + a, the rotation is given by the linear
parametrization:

hðtÞ ¼ p
4

1þ t � s
a

h i
ð12Þ

with h = 0 at t = s � a, and h ¼ p
2

at t = s + a. For the
fourth interval 2s � a 6 t 6 2s + a, the transformation
for the RF pulse is given by



Table 1
Transformations of the operator URF and the toggling frame quadrupolar Hamiltonian during each stage of the quadrupolar echo sequence shown in
Fig. 1

Interval Time URF
gHxQ

d1 0 6 t 6 s � a 1 xQ [12Iz,1Iz,1 � II]
d2 s � a 6 t 6 s + a exp [2ih (t)Ix,1] xQ [12Iz,1 Iz,1cos2 (h) + 12Iy,1 Iy,1 sin2 (h) + 6Ix,2sin (h)cos(h) � II]
d3 s + a 6 t 6 2s � a exp [ipIx,1] xQ [12Iy,1 Iy,1 � II]
d4 2s � a 6 t 6 2s + a exp [2ih (t)Iy,1] · exp[ipIx,1] xQ [12Iy,1Iy,1cos2 (h) + 12Ix,1Ix,1sin2 (h) � 6Iz,2sin (h)cos (h) � II]
d5 2s + a 6 t 6 3s exp [ipIy,1] · exp[ipIx,1] xQ [12Ix,1 Ix,1 � II]

xQ ¼ x0QR2;0
1ffiffi
6
p and x0Q ¼

e2qQ
2Ið2I�1Þ�h.
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hðtÞ ¼ p
4

1þ t � 2s
a

� �
ð13Þ

with h = 0 at t = 2s � a and h ¼ p
2

at t = 2s + a. Table 1
gives the toggling frame Hamiltonians during each stage
of the evolution that were developed knowing the transfor-
mations of Ix,1, Iy,1 and Iz,1. The resulting toggling frame
Hamiltonians were integrated over their respective time
intervals and are given in Table 2. The zeroth-order terms
of the Magnus expansion were calculated for all possible
eight cycles that can refocus the spin magnetization and
produce an echo.

Consider the case of a p/2 pulse about the x-axis
followed by a p/2 pulse about the y-axis. From Table 2,
the zeroth-order term of the Magnus expansion is given by

H 0
xQ
¼ 4axQ

ps
½Ix;2 � Iz;2� ð14Þ

Two important findings of this result should be recognized.
First, when a = 0 the zeroth-order term vanishes. In this
situation, the density matrix at t = 3s, calculated using
Eq. (5), is found to be qx,y (3s) = Iy,1, corresponding to
the case of perfect refocusing of the spin magnetization
with no additional quantum coherences present to first-or-
der of the Magnus expansion. This is what one would ex-
pect in the case of d-function RF pulses. Second, the
result indicates that the contribution of finite pulse widths
to the system evolution becomes less important for large
values s. In practice the efficiency of refocusing the spin
dynamics of dipolar or quadrupolar coupled spins with this
two pulse cycle is known from multiple pulse NMR to de-
Table 2
Integrated first-order terms of the Magnus expansion for the quadrupolar
Hamiltonian for eight cycles of the quadrupolar echo pulse sequence in
Fig. 1 that produce an echo

Pulse 1 Pulse 2 H0
xQ

x y w
3s ½Ix;2 � Iz;2�

x �y w
3s ½Ix;2 þ Iz;2�

�x y w
3s ½�Ix;2 þ Iz;2�

�x �y w
3s ½�Ix;2 � Iz;2�

y x w
3s ½�Iz;2 � Iy;2�

y �x w
3s ½Iz;2 � Iy;2�

�y x w
3s ½Iz;2 þ Iy;2�

�y �x w
3s ½�Iz;2 þ Iy;2�

w ¼ 12axQ

p , where xQ is the quadrupolar coupling constant and 2a is the p/2
pulse width.
crease with large pulse spacings, making the use of large
spacings between pulses impractical [17]. In order to re-
move the contribution of finite pulse widths in the system
evolution we consider Eqs. (5) and (14) and determine
the state of the spin system at 3s and the detected signal.

After a lengthy calculation, the density matrix at 3s for a
p/2 pulse about the x-axis followed by a p/2 pulse about
the y-axis is found to be

qx;yð3sÞ ¼ sinð
ffiffiffi
2
p

wÞffiffiffi
2
p Ix;2

þ 1

2
cos

wffiffiffi
2
p
� �

þ cosðw
ffiffiffi
2
p
Þ

� �
Iy;1

� 1

2
cos

wffiffiffi
2
p
� �

� cosðw
ffiffiffi
2
p
Þ

� �
Iz;1 þ

sinð
ffiffiffi
2
p

wÞffiffiffi
2
p Iy;3

þ 1

4
�2

ffiffiffi
2
p

sin
wffiffiffi
2
p
� �

þ
ffiffiffi
2
p

sinðw
ffiffiffi
2
p
Þ

� �
Ix;3 ð15Þ

where w ¼ 12axQ

p . When a=0 the result above reduces to
qx,y (3s) = Iy,1, which is indeed what one would expect in
the situation of d-function RF pulses. The terms Ix,3 and
Iy,3 commute with the quadrupolar interaction and conse-
quently do not evolve and are not detectable. However,
Ix,2 does not commute with the quadrupolar Hamiltonian
and evolves to a detectable signal which produces a spectral
distortion as we will now show Using the Liouville–Von
Neumann equation, the quadrupolar Hamiltonian in Eq.
(11) and qx,y (3s) the density matrix at a time t + 3s is
found to be

qx;yðt þ 3sÞ ¼ 1ffiffiffi
2
p cos

2

3
xQt

� �
sinðw

ffiffiffi
2
p
ÞIx;2

þ 1

2
cosðxQtÞ cos

wffiffiffi
2
p
� �

þ cos w
ffiffiffi
2
p� �� �

Iy;1

� 1

2
cos

1

3
xQt

� �
cos

wffiffiffi
2
p
� �

� cos w
ffiffiffi
2
p� �� �

Iz;1

þ sinð
ffiffiffi
2
p

wÞffiffiffi
2
p Iy;3

1

4
�2

ffiffiffi
2
p

sin
wffiffiffi
2
p
� �

þ
ffiffiffi
2
p

sinðw
ffiffiffi
2
p
Þ

� �
Ix;3

� 1

2
sinðxQtÞ cos

wffiffiffi
2
p
� �

þ cosðw
ffiffiffi
2
p
Þ

� �
Iy;2

� 1

2
sin

1

3
xQt

� �
cos

wffiffiffi
2
p
� �

� cosðw
ffiffiffi
2
p
Þ

� �
Iz;2

1 2
� � ffiffiffip
� ffiffiffi
2
p sin

3
xQt sinð 2wÞIx;1 ð16Þ
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The signal detected as a function of time is formally given
by Signal (t + 3s) = Trace ((Ix,1 + iIy,1)q (3s + t)) which
reduces to

Signalx;yðt þ 3sÞ ¼ i
1

2
cosðxQtÞ cos

wffiffiffi
2
p
� �

þ cosðw
ffiffiffi
2
p
Þ

� �� �

� 1ffiffiffi
2
p sin

2

3
xQt

� �
sinð

ffiffiffi
2
p

wÞ
� �

ð17Þ

In the above expression for qx,y (t + 3s), the term
sinð2

3
xQtÞ sinð

ffiffiffi
2
p

wÞ multiplying Ix,1 arises from the time
evolution of the term Ix,2 in qx,y (3s) and is an odd function.
It indeed vanishes in the case of delta function RF pulses
ða ¼ 0;w ¼ 12axQ

p ¼ 0Þ. However, the term multiplying Iy,1

in qx,y (t + 3s), 1
2
cosðxQtÞ½cosðw=

ffiffiffi
2
p
Þ þ cosð

ffiffiffi
2
p

wÞ�, is an
even function and is the desired signal. As a consequence,
the combination of the odd and even functions results in
a slightly asymmetric spectrum causing one of the peaks
of the quadrupolar powder pattern to be slightly higher
than the other.

The density matrices at 3s for all eight possible combi-
nations of phase shifted RF pulses are provided in Table
3 with each highlighting the effect of finite pulse widths
on the system evolution and the state of the system at 3s.
Referring to Table 3, all ±x, ±y cycles create a term Ix,2

and all ±y, ±x cycles create a term Iy,2 due to finite pulse
widths. These terms evolve to detectable coherence Ix,1

and Iy,1, respectively, and result in a spectral distortion as
described above for the x, y cycle.

With the goal of canceling the contribution of finite
pulse width artifacts in the detected signal, we wish to
remove the terms Ix,2 and Iy,2 in the density matrix at 3s.
Referring to Table 3, one such phase cycle is the addition
of an x, y cycle with an x, �y cycle acquired with identical
receiver phases. Another possible combination of pulse
cycles that suppresses finite pulse widths, which is also
robust against other artifacts, is given by the following
phase cycling scheme
Table 3
Density matrices at 3s, q (3s), for eight cycles of the quadrupolar echo pulse
Hamiltonian

Pulse 1 Pulse 2 q(3s)

x y
sinð

ffiffi
2
p

wÞffiffi
2
p Ix;2 þ 1

2½cosð wffiffi
2
p Þ þ cosðw

ffiffiffi
2
p
Þ�Iy;1 � 1

2

x �y � sinð
ffiffi
2
p

wÞffiffi
2
p Ix;2 þ 1

2½cosð wffiffi
2
p Þ þ cosðw

ffiffiffi
2
p
Þ�Iy;1 � 1

2

�x y
sinð

ffiffi
2
p

wÞffiffi
2
p Ix;2 � 1

2½cosð wffiffi
2
p Þ þ cosðw

ffiffiffi
2
p
Þ�Iy;1 � 1

2

�x �y � sinð
ffiffi
2
p

wÞffiffi
2
p Ix;2 � 1

2½cosð wffiffi
2
p Þ þ cosðw

ffiffiffi
2
p
Þ�Iy;1 � 1

2

y x � sinðw=
ffiffi
2
p
Þffiffi

2
p Iy;3 � sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iz;3 þ sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Ix;3 þ 1

2½c

y �x
sinðw=

ffiffi
2
p
Þffiffi

2
p Iy;3 þ sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iz;3 � sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Ix;3 þ 1

2½c

�y x
sinðw=

ffiffi
2
p
Þffiffi

2
p Iy;3 þ sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iz;3 � sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Ix;3 þ 1

2½c

�y �x � sinðw=
ffiffi
2
p
Þffiffi

2
p Iy;3 � sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iz;3 þ sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Ix;3 þ 1

2½c

w ¼ 12axQ

p , xQ is the quadrupolar coupling constant, 2a is the p/2 pulse width
/1 ¼ fx; x;�x;�x; y; y;�y;�yg
/2 ¼ fy;�y; y;�y; x;�x; x;�xg
RP ¼ f270; 270; 90; 90; 0; 0; 180; 180g

ð18Þ

where /1 is the phase of the first pulse, /2 is the phase of the
second pulse and RP is the receiver phase and is given in de-
grees. The above phase cycling scheme is found to be inde-
pendent of a and the finite pulse width contribution to the
signal detected is removed. This can be shown by using the
results in Table 3 and performing the calculation for the sig-
nal detected, which is formally given by the following
calculation

Signalð3sÞ ¼ Tracefðqx;yð3sÞ þ qx;�yð3sÞ
� q�x;yð3sÞ � q�x;�yð3sÞÞð�Iy;1 þ iIx;1Þ
þ ðqy;xð3sÞ þ qy;�xð3sÞ
� q�y;xð3sÞ � q�y;�xð3sÞÞðIx;1 þ iIy;1Þg

ð19Þ

By using the density matrices in Table 3, the above expres-
sion reduces to

Signalð3sÞ ¼ 4 cos
wffiffiffi
2
p
� �

þ cosðw
ffiffiffi
2
p
Þ

� �
� Trace �Iy;1ð�Iy;1 þ iIx;1Þ þ Ix;1ðIx;1 þ iIy;1Þ

	 

ð20Þ

which has no dependence on Ix,2 or Iy,2 in the argument of
the Trace operator that were shown to cause a spectral
asymmetry. The modulation 4ðcosð wffiffi

2
p Þ þ cosðw

ffiffiffi
2
p
ÞÞ, how-

ever, results in a small reduction in signal amplitude due
to finite pulse widths. This phase cycling scheme is indeed
based on the familiar CYCLically Ordered Phase Sequen-
ce(CYCLOPS) developed by Hoult and Richards [19], al-
ready known in the NMR community to suppress the
ringdown effects of the second pulse and remove imbalanc-
es in the channels of the receiver. This phase cycling scheme
also suppresses the free induction decay from the second
pulse that may distort the signal detected when perfect
p/2 pulses are not delivered to the spin system. While our
calculations assumed perfect p/2 pulses, this requirement
sequence for a system evolving under the first-order secular quadrupolar

½cosð wffiffi
2
p Þ � cosðw

ffiffiffi
2
p
Þ�Iz;1 þ sinð

ffiffi
2
p

wÞffiffi
2
p Iy;3 þ 1

4½�2
ffiffiffi
2
p

sinð wffiffi
2
p Þ þ

ffiffiffi
2
p

sinðw
ffiffiffi
2
p
Þ�Ix;3

½cosð wffiffi
2
p Þ � cosðw

ffiffiffi
2
p
Þ�Iz;1 � sinð

ffiffi
2
p

wÞffiffi
2
p Iy;3 � 1

4 ½�2
ffiffiffi
2
p

sinð wffiffi
2
p Þ þ

ffiffiffi
2
p

sinðw
ffiffiffi
2
p
Þ�Ix;3

½cosð wffiffi
2
p Þ � cosðw

ffiffiffi
2
p
Þ�Iz;1 � sinð

ffiffi
2
p

wÞffiffi
2
p Iy;3 � 1

4 ½�2
ffiffiffi
2
p

sinð wffiffi
2
p Þ þ

ffiffiffi
2
p

sinðw
ffiffiffi
2
p
Þ�Ix;3

½cosð wffiffi
2
p Þ � cosðw

ffiffiffi
2
p
Þ�Iz;1 þ sinð

ffiffi
2
p

wÞffiffi
2
p Iy;3 þ 1

4 ½�2
ffiffiffi
2
p

sinð wffiffi
2
p Þ þ

ffiffiffi
2
p

sinðw
ffiffiffi
2
p
Þ�Ix;3

osðw
ffiffiffi
2
p
Þ � cosðw=

ffiffiffi
2
p
Þ�Iz;1 þ sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iy;2 � 1

2½cosðw
ffiffiffi
2
p
Þ þ cosðw=

ffiffiffi
2
p
Þ�Ix;1

osðw
ffiffiffi
2
p
Þ � cosðw=

ffiffiffi
2
p
Þ�Iz;1 � sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iy;2 � 1

2½cosð
ffiffiffi
2
p

wÞ þ cosðw=
ffiffiffi
2
p
Þ�Ix;1

osðw
ffiffiffi
2
p
Þ � cosðw=

ffiffiffi
2
p
Þ�Iz;1 þ sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iy;2 þ 1

2½cosð
ffiffiffi
2
p

wÞ þ cosðw=
ffiffiffi
2
p
Þ�Ix;1

osðw
ffiffiffi
2
p
Þ � cosðw=

ffiffiffi
2
p
Þ�Iz;1 � sinð

ffiffi
2
p

wÞ
2
ffiffi
2
p Iy;2 þ 1

2½cosð
ffiffiffi
2
p

wÞ þ cosðw=
ffiffiffi
2
p
Þ�Ix;1

and we have set c�hBo
kT ¼ 1.
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is never achievable in NMR experiments and produces
quantum coherences that distort the spectra of spin-1 nu-
clei. Antonijevic and Wimperis [20] have recently described
phase cycling schemes for coherence pathway selection in
quadrupolar echo experiments that are robust in suppress-
ing such distortions. Their work showed that the creation
of quantum coherence in the two pulse cycle shown in
Fig. 1 due to field inhomogeneity and pulse imperfections
can be removed by the same cycle suggested in Eq. (18).
In addition to the eight step cycle, they suggested more
complex phase cycling schemes for refocusing both offset
and quadrupolar interactions, which is not the subject of
the work presented.

Furo and Hedin [7] have also reported on a novel phase
cycling scheme that removes ringdown effects for the same
two pulse echo sequence analyzed here. Their work shows
how to cancel the electronic ringing signal that is phase
coherent with the first pulse, and is not affected by the sec-
ond pulse but distorts the detected signal when the spacing
between pulses is short. Their phase cycling scheme is

/1 ¼ fxg
/2 ¼ fx; y;�x;�yg
RP ¼ f270; 90; 270; 90g

ð21Þ

For the purposes of also removing finite pulse width artifacts
in addition to canceling such ringdown effects, we calculated
Table 4
Integrated first-order terms of the Magnus expansion for the quadrupolar
Hamiltonian for all eight cycles suggested by Furo and Hedin [7] useful for
suppressing ringdown effects in quadrupolar echo experiments

Pulse 1 Pulse 2 H0
xQ

x x �2xQ Iy,3

x �x 2xQIy;3 � 8axQ

ps Ix;2

�x x 2xQIy;3 þ 8axQ

ps Ix;2

�x �x �2xQIy,3

y y 2xQIx,3

y �y �2xQIy;3 þ 8axQ

ps Iy;2

�y y �2xQIy;3 � 8axQ

ps Iy;2

�y �y 2xQIx,3

xQ is the quadrupolar coupling constant and 2a is the p/2 pulse width.

Table 5
Density matrices at 3s, q (3s), for the eight cycles suggested by Furo and Hed

Pulse 1 Pulse 2 q (3s)

x x �cos (3sxQ)Iz,1 � sin (3sxQ)Iz,2

x �x þ 48axQ

p S1 sinð9sxQ

2 ÞIy;1 þ 48axQ

p S1 cosð9sxQ

2 ÞIy;2 þ

�x x � 48axQ

p S1 sinð9sxQ

2 ÞIy;1 � 48axQ

p S1 cosð9sxQ

2 ÞIy;2 þ
�x �x �cos (3sxQ)Iz,1 � sin (3sxQ)Iz,2

y y �cos (3sxQ)Iz,1 + sin(3sxQ)Iz,2

y �y � 48axQ

p S1sinð9sxQ

2 ÞIx;1 þ 48axQ

p S1 cosð9sxQ

2 ÞIy;2 þ

�y y þ 48axQ

p S1 sinð9sxQ

2 ÞIx;1 � 48axQ

p S1 cosð9sxQ

2 ÞIx;2 þ

�y �y �cos (3sxQ)Iz,1 + sin(3sxQ)Iz,2

C1 ¼ cosh½32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs2 þ 64a2

p2 Þ
q

xQ�, S1 ¼ sinh½32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs2 þ 64a2

p2 Þ
q

xQ�, xQ is the quadrup
the first-order term of the Magnus expansion for the cycles
/1 = x with /2 = x,�x, and other possible similar combina-
tions. The resulting zeroth-order terms of the Magnus
expansion for these cycles are given in Table 4, and the den-
sity matrices at 3s are given in Table 5. Considering the result
in Table 5 with that in Table 3, we find that the phase cycling
scheme above does not suppress finite pulse width contribu-
tions to the signal even though it is robust against ringdown
effects. In their work, Furo and Hedin suggest more complex
phase cycling schemes that involve cycling the phases of all
the pulses and the receiver as follows

/1¼fx;x;x;x;�x;�x;�x;�x;y;y;y;y;�y;�y;�y;�yg
/2¼fx;y;�x;�y;y;x;�y;�x;y;x;�y;�x;x;y;�x;�yg
RP¼f90;270;90;270;90;270;90;270;180;0;180;0;

180;0;180;0g

ð22Þ

Using Tables 3 and 5, the corresponding density matrix
when all the cycles are added and subtracted as indicated
for the above phase cycle at 3s is

qð3sÞ ¼ 2 � cos
xffiffiffi

2
p
� �

� cosð
ffiffiffi
2
p

xÞ
�

þ 8a
p

sin
3w1

4

� � sinh
3xQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q
3
75Iy;1

þ 2 � cos
xffiffiffi

2
p
� �

� cosð
ffiffiffi
2
p

xÞ
�

þ 8a
p

sin
3w1

4

� � sinh
3xQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q� �
6xQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q
3
75Ix;1

� 16a
p

cos
3w1

4

� � sinh
3xQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q Ix;2

þ 16a
p

cos
3w1

4

� � sinh
3xQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� s2 þ a2

p2

� �q Iy;2

ð23Þ
in [7] for suppressing ringdown artifacts of the RF coil

½C1 cosð9sxQ

2 Þ þ 6sxQS1 sinð9sxQ

2 Þ�Iz;1 þ ½C1 sinð9sxQ

2 Þ � 6sxQS1 cosð9sxQ

2 Þ�Iz;2

½C1 cosð9sxQ

2 Þ þ 6sxQS1 sinð9sxQ

2 Þ�Iz;1 þ ½C1 sinð9sxQ

2 Þ � 6sxQS1 cosð9sxQ

2 Þ�Iz;2

½C1 cosð9sxQ

2 Þ þ 6sxQS1 sinð9sxQ

2 Þ�Iz;1 � ½C1 sinð9sxQ

2 Þ � 6sxQS1 cosð9sxQ

2 Þ�Iz;2

½C1 cosð9sxQ

2 Þ þ 6sxQS1 sinð9sxQ

2 Þ�Iz;1 � ½C1 sinð9sxQ

2 Þ � 6sxQS1 cosð9sxQ

2 Þ�Iz;2

olar coupling constant, 2a is the p/2 pulse width and we have set c�hBo
kT ¼ 1.
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where w1 ¼ 12axQ

p and x = 6sxQ. The above expression
indicates that the detected signal will have a finite pulse
width contribution due to the presence of the coherence
terms Ix,2 and Iy,2, which do not commute with the quad-
rupolar Hamiltonian and evolve to detectable signal, as
shown previously. Consequently, this cycle does not
exactly remove the finite pulse width contributions to
the detected signal as did the phase cycle shown in Eq.
(18), even though it is robust against suppressing spurious
artifacts due to the electronic ringing of both pulses. The
finite pulse width contribution multiplying the terms Ix,2

and Iy,2 for this cycle vary approximately inversely with
s, and depending on the strength of the quadrupolar
interaction it is expected that long pulse spacings would
still make this phase cycle robust against finite pulse
width artifacts as well.
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3. Simulation

To confirm the results of the calculations and illustrate
the spectral distortion introduced by finite pulse width
effects, we carried out a simulation of spin I = 1 nuclei sub-
ject to a strong magnetic field evolving under the first-order
quadrupolar interaction and the RF pulse sequence shown
in Fig. 1.

Given the density matrix of the spin system at the time
3s from Table 3, the state of the system at any point in time
tk is given by
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Fig. 2. Simulated quadrupolar echo spectra based on the two pulse
sequence in Fig. 1, with a p/2 pulses about the x-axis followed by a p/2
pulse about the y-axis without any phase cycling. The figure highlights the
spectral distortion introduced (asymmetric powder pattern) due to finite
pulse widths of (A) 0.5 ls, (B) 1 ls and (C) 2 ls. (D) Simulated
quadrupolar echo spectra based on the two pulse sequence in Fig. 1, for
2 ls pulses with the phase cycling scheme indicated in Eq. (18) of the text
highlighting the finite pulse width artifact suppression.
qðtkÞ ¼ expð�iH QtkÞqð3sÞ expðiHQtkÞ ð24Þ
where HQ is given in Eq. (1). The detected signal at time tk

is found from performing the computation

SignalðtkÞ ¼ TracefqðtkÞ½Ix;1 þ iIy;1�g ð25Þ

The simulated spectra were developed by using a dwell time
equal to 0.5 ls and a quadrupolar coupling constant equal
to 125 kHz. We assumed a sample with a random distribu-
tion of orientations, a quadrupolar asymmetry parameter
g=0, and varied the pulse width 2a over the range of
0.5–2 ls. The results are shown in Fig. 2 for a cycle where
the first pulse was a p/2 about the x-axis, and the second
pulse was a p/2 about the y-axis. The simulation illustrates
that without phase cycling the spectra are dependent on the
pulse width, and that the powder pattern becomes more
asymmetric as the pulse width increases from 0.5 ls
(Fig. 2A) to 2 ls (Fig. 2C). A similar pattern is observed
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Fig. 3. (A) Normalized experimental quadrupolar echo spectra of
deuterated polyethelene based on the two pulse sequence in Fig. 1 with
a p/2 pulse about the x-axis followed by a p/2 pulse about the y-axis
without any phase cycling. The figure highlights the spectral distortion
introduced (asymmetric powder pattern) due to finite pulse widths in
agreement with our simulated result shown in Fig. 2C. The peak in the
middle of the powder pattern is due to a highly mobile group and has been
observed by others in the same sample [15]. (B) Normalized experimental
quadrupolar echo spectra acquired on the same sample based on the two
pulse sequence in Fig. 1 and the phase cycling scheme given in Eq. (22) of
the text. (C) Normalized experimental quadrupolar echo spectra based on
the two pulse sequence in Fig. 1 and the phase cycling scheme given in Eq.
(18), highlighting the robust finite pulse width artifact suppression. In all
of the experiments s = 40 ls and 2a = 2 ls.
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for all remaining seven cycles given in Table 3 as well as
that of the phase cycling scheme developed by Furo and
Hedin suggested in Eq. (21). Fig. 2D highlights the result
when the signals are co-added using the phase cycling
scheme suggested in Eq. (18), and the distortion is removed
resulting in symmetric spectra.

4. Experimental results

We performed an experiment to verify these findings on
a Varian Inova 500 MHz NMR spectrometer using a Doty
model DSI 431 solid state NMR probe. A sample of pow-
dered deuterated polyethelene was purchased from Poly-
mer Source, Inc. located in Montreal, Canada. Our
experimental procedure involved putting the nuclear spins
on resonance and tuning the p/2 pulses and requisite RF
power using a sample of deuterated water with well known
tuning procedures used in solid state multiple pulse NMR
[1]. In the experiments, the spacing of s was set to 40 ls, the
dwell time was set to 0.5 ls and 2416 scans were collected
with a recycle delay of 5 s at room temperature.

Fig. 3A–C highlight the experimental data acquired with
and without phase cycling schemes for a readily achievable
2 ls pulse width. The presence of the narrow line in the
center of the powder pattern is due to highly mobile regions
of the sample where the quadrupolar Hamiltonian is par-
tially averaged away and has been observed by others in
deuterated polyethelene [15]. For the purposes of our work,
this feature can be disregarded. In Fig. 3A, the experimen-
tal data illustrate that without phase cycling the peaks of
the quadrupolar powder pattern appear asymmetric as
expected from our analysis and simulation. In contrast,
Fig. 3C shows that when the phase cycling scheme given
in Eq. (18) is implemented, the spectral distortion is
removed and the horns of the quadrupolar powder pattern
appear symmetric. We also tested the cycle suggested by
Furo and Hedin [7] given in Eq. (22). Fig. 3B shows the
spectra acquired with this cycle, highlighting a slight asym-
metry in the quadrupolar powder pattern. With longer
spacings between pulses, the spectral distortion with this
cycle is less apparent.

Though our analysis has assumed that the p/2 pulses
delivered to the spin system are perfect, this cannot be
achieved in practice as the RF field strength varies spatially
across the sample. In practice one should ensure that the
sample is centered in the RF coil and a coil that produces
a homogeneous field over the sample is used [21]. To fur-
ther improve the efficiency of suppressing artifacts due to
finite pulse widths, one aught to consider the higher order
terms of the Magnus expansion. It is well known in solid
state NMR that higher order terms of the Magnus expan-
sion of this two pulse cycle for the dipolar Hamiltonian are
not zero since the toggling frame Hamiltonians at different
times do not commute with one another [1]. While the
higher order terms of the Magnus expansion for this cycle
have not been worked out for the quadrupolar Hamiltoni-
an, the experimental results indicate that the first-order
contribution of finite pulse widths to distorting the spectra
is well suppressed with the suggested phase cycling scheme.
With shorter pulse widths and higher RF power, it is
expected that the distortion can be further reduced, and
the features on the tail ends of the quadrupolar powder
pattern can be better resolved.
5. Conclusions

Average Hamiltonian theory was applied for creating a
phase cycling scheme that removes finite pulse width arti-
facts in the spectra of spin-1 nuclei acquired with the famil-
iar two pulse echo experiment. Our results are verified both
with a simulation tool written in Matlab and experimental-
ly on a sample of deuterated polyethelene. It is expected
that a similar analysis can be performed on composite
pulse cycles or other pulse sequences where finite pulse
widths may introduce similar spectral distortions.
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